domain, domain name, premium domain name for sales

Thứ Ba, 2 tháng 8, 2011

Cách đọc sách của các nhà Toán học nổi tiếng

Nhà văn Pháp Dôla nói: “Toàn bộ ý nghĩa cuộc sống là ở chỗ luôn luôn tìm tòi những cái chưa biết, ở chỗ không ngừng làm tăng hơn kiến thức”. Để có kiến thức thì phải đọc sách, biết được phương pháp đọc sách của các nhà toán học sẽ giúp bạn được nhiều điều bổ ích.


Biến sách “dày” thành sách “mỏng”

Hoa La Canh là nhà toán học khá nổi tiếng của Trung Quốc, nhiều tác phẩm toán học của ông được xếp vào loại kinh điển. Khi bàn về chuyện đọc sách ông đã từng nói: “Một cuốn sách, khi chưa đọc, bạn cảm thấy sao mà dày cộm thế” “nhưng một khi đã thấu triệt thật sự nội dung của nó, nắm chắc được những quan điểm quan trọng của nó, bạn sẽ cảm thấy cuốn sách trở nên mỏng teng. Càng thấu triệt, cảng cảm thấy cuốn sách mỏng”. Làm thế nào để đọc quyển sách “dày” thành quyển sách “mỏng”? Phương pháp của Hoa La Canh là: “nghiền ngẫm thật kĩ từng vấn đề trong sách, sau khi thật sự đã hiểu xâu chuỗi toàn bộ nội dung cuốn sách để lí giải hiểu sâu thêm, từ đó, làm rõ cái gì là vấn đề chủ yếu của cuốn sách, cùng với mối quan hệ giữa những vấn đề đó. Như vậy chúng ta nắm được sợi dây cơ bản chi phối toàn bộ cuốn sách và quán triệt được thực chất tinh thần của cuốn sách”.


Nhảy qua chỗ “khó”

Nhà toán học Tiền Vĩ Trường thường dùng cách “nhảy qua chỗ khó” khi đọc sách. Ông nói: Trong quá trình đọc sách học tập khi gặp những vấn đề nhỏ, không phải là vấn đề mấu chốt, tại sao chúng ta không vòng qua, không nhảy qua? Giống như đi đường gặp những vật chướng ngại như hòn đá, rãnh nước… Có người gặp rãnh nước, không lấp không được; gặp hòn đá không thể không vần chuyển đi chỗ khác, như vậy là đã đem thời gian và tinh lực tan vào trong những vấn đề nhỏ. Thực ra chỉ cần vòng qua hoặc nhảy qua là được. Khi học tập phải học tập những vấn đề mấu chốt, phải sãi bước lên trước, khi đã đi được đoạn đường dài, ngoái đầu nhìn lại, chẵng còn thấy vật chướng ngại nữa. Thì ra, những chướng ngại đó chỉ là những vấn đề nhỏ. Nếu bạn bị quẩn quanh với những vấn đề nhỏ đó, sẽ chẳng đạt được gì trong cuộc đời.

Đặt vững cơ sở.

Trần Cảnh Nhuận là nhá toán học nổi tiếng Trung Quốc. Để đoạt được viên ngọc trên vương miện toán học - chứng minh bài toán Gôn-bách, ông đã phải lao động sáng tạo vất vả. Khi hỏi ông về bí quyết học toán, ông trả lời trong bốn chữ: đặt vững cơ sở. Ông chỉ rõ: những tri thức toán học học được ở bậc tiểu học và trung học là những tri thức ABC, rất cơ bản, chúng ta thường xuyên phải củng cố, không được học đại số mà quên mất 4 phép tính, học được vi tích phân thì quên tam giác lượng hoặc hình học. Được như vậy, chúng ta thường dễ tìm ra lời giải ngắn gọn nhất cho nhiều vấn đề gặp phải. Sau khi luận văn chứng minh giả thuyết Gôn-bách là đúng ,nhiều người viết thư cho ông. Trong thư trả lời, Trần Cảnh Nhuận viết :"Mấy năm nay ,tôi nhận được hàng vạn bức thư, có những học sinh, ngay những khái niệm toán học cơ bản nhất còn chưa nắm vững đã vội đi chứng minh bài toán của Gôn-bách. "Học toán mà muốn 1 bước lên trời thì khó mà thực hiện được. Trước tiên cần phải học thuộc, nhớ kỹ những cái cơ bản nhất. Bình thường phải học thưộc,lúc nào cũng có thể dùng được. Như vậy mới đạt được hiệu quả tốt.


Trước chậm sau nhanh

Giáo sư Vương Hạnh Khôn, nguyên hiệu trưởng trường Đại học Sư phạm Bắc Kinh, Trung Quốc, từng có thói quen đọc sách trước chậm sau nhanh. Tại sao phải làm như vậy? Lí do của giáo sư là: một vài chương ở đầu cuốn sách thường là then chốt của cả cuốn sách, bởi vì, mỗi bộ môn khoa học đều có đối tượng nghiên cứu, thuật ngữ và kí hiệu chuyên môn riêng biệt. Ví dụ, hình học phẳng là nghiên cứu tính chất của hình tam giác, hình tròn và các hình khác; đại số sơ cấp chủ yếu là nghiên cứu các phép toán đại số. Do đối tượng nghiên cứu của mỗi cuốn sách khác nhau, nên khi xem hết quyển này, xem sang quyển khác, khi bắt đầu, thường là chưa thích nghi. Nếu như không bình tâm nhẫn nại đọc hiểu kĩ một hai chương đầu của cuốn sách, thì không thể làm vỡ được mạch suy nghĩ cơ bản của cuốn sách, nên về sau đọc sẽ rất khó khăn. Để bảo đảm “ăn hết” nội dung cuốn sách, giáo sư thường áp dụng các biện pháp như: vừa đọc, vừa ghi chép làm bài tập. Chi khi ghi chép làm bài tập mới thật sự suy nghĩ, lật đi lật lại vấn đề. Cái kiểu cưỡi ngựa xem hoa là không thể được. Với cách đọc như vậy, càng đọc càng nhanh, càng thấy hứng thú, nắm vững nội dung của toàn bộ cuốn sách.

VnMath.Com (Theo "Kho vàng tri thức khoa học cho mọi người")

Không có nhận xét nào:

Đăng nhận xét